PENERAPAN METODE USER-BASED COLLABORATIVE FILTERING UNTUK REKOMENDASI PRODUK CLOTHING PADA PLATFORM E-COMMERCE SHOPEE
Abstract
Penelitian ini bertujuan untuk mengimplementasikan metode User-Based Collaborative Filtering (UBCF) dalam sistem rekomendasi produk clothing berbasis data e-commerce. Teknik web scraping menggunakan ekstensi Tamper Monkey (JavaScript) diterapkan untuk mengekstraksi data pengguna dari platform Shopee, termasuk nama pengguna, rating, waktu ulasan, serta deskripsi komentar. Data hasil ekstraksi disimpan dalam format CSV dan diproses menggunakan bahasa pemrograman Python dengan pustaka Pandas, NumPy, Selenium, dan BeautifulSoup. Analisis kemiripan antar pengguna dilakukan menggunakan metode Euclidean Distance untuk menentukan pengguna dengan preferensi serupa. Hasil prediksi rating dihitung menggunakan metode Weighted Sum Prediction dan diuji dengan metrik Mean Absolute Error (MAE) untuk menilai tingkat akurasi. Berdasarkan hasil pengujian, sistem rekomendasi berbasis UBCF mampu memberikan rekomendasi produk dengan tingkat akurasi yang baik dan relevansi tinggi terhadap preferensi pengguna. Dengan demikian, penerapan UBCF pada data e-commerce terbukti dapat meningkatkan pengalaman belanja daring pengguna dan memberikan kontribusi nyata bagi pengembangan sistem rekomendasi yang lebih personal dan adaptif.
Downloads
References
Halim, F., Wijaya, A., & Wiyono, W. (2022). Analisis dan Perancangan E-Commerce Berbasis Web Dengan Penerapan Sistem Perekomendasian Menggunakan Metode Collaborative Filtering Serta Metode Up, Down, Cross Selling. Algor, 4, 28–43. https://doi.org/10.31253/algor.v4i1.1516
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5–53.
Hu, Zhi-Hua, Li, Xiang, Wei, Chen, & Zhou, Hong-Lei. (2018). Examining collaborative filtering algorithms for clothing recommendation in e-commerce. Textile Research Journal, 89(14), 2821–2835. https://doi.org/10.1177/0040517518801200
Jaja, V., Susanto, B., & Sasongko, L. (2020). Penerapan Metode Item-Based Collaborative Filtering Untuk Sistem Rekomendasi Data MovieLens. D’CARTESIAN, 9, 78. https://doi.org/10.35799/dc.9.2.2020.28274
Liu, C., Kong, X., Li, X., & Zhang, T. (2022). Collaborative Filtering Recommendation Algorithm Based on User Attributes and Item Score. Scientific Programming, 2022(1), 4544152. https://doi.org/https://doi.org/10.1155/2022/4544152
Maesaroh, S., Afiyati, A., Hakim, L., Sari, Y., Yusuf, M., Budi Perkasa, E., Utami, W., Saptadi, N., Mutmainah, S., Khairunnas, K., Harahap, E., Alamin, Z., Karima, I., Saputra, A., Mubarak, R., & Pustaka, S. (2024). Bahasa Pemrograman Python.
Nizamuddin, H., Azan, K., Khairul Anwar, M. S. I., Muhammad Ashoer, S. E., Nuramini, A., Irlina Dewi, M. H., Abrory, M., Pebriana, P. H., Jafar Basalamah, S. E., & Sumianto, M. P. (2021). Metodologi Penelitian; Kajian Teoritis Dan Praktis Bagi Mahasiswa. CV. Dotplus Publisher.
Pradana, M., & Noorrizki, R. (2022). Analisis Motif Persuasi Affiliator dalam Menunjang Pemasaran Platform Binary Option. Flourishing Journal, 2, 375–383. https://doi.org/10.17977/um070v2i52022p375-383
Saprida, S., Umari, Z. F., & Raya, F. (2023). Legalitas transaksi jual beli online di Indonesia. Ekonomica Sharia: Jurnal Pemikiran Dan Pengembangan Ekonomi Syariah, 8(2), 315–336.
Zhang, J., Peng, Q., Sun, S., & Liu, C. (2014). Collaborative filtering recommendation algorithm based on user preference derived from item domain features. Physica A: Statistical Mechanics and Its Applications, 396, 66–76. https://doi.org/10.1016/j.physa.2013.11.013
Copyright (c) 2025 Jelita Arba Sholeha

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal allows anyone to compose, correct, and do derivative works, even for commercial purposes, as long as they credit for the original work. This license is the freest. It is recommended for maximum distribution and use of licensed material.
The submitted paper is assumed not to contain any proprietary materials that are not protected by patent rights or patent applications; The responsibility for technical content and protection of proprietary materials rests with the authors and their organizations and not the responsibility of journal or its editorial staff. The primary (first/appropriate) author is responsible for ensuring that the article has been viewed and approved by all other authors. The author's responsibility is to obtain all necessary copyright waivers to use any copyrighted material in the manuscript before submission.
Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work. Jurnal Pendidikan, Sains dan Teknologi allows the author(s) to hold the copyright without restrictions and allow the author(s) to retain publishing rights without restrictions. Jurnal Pendidikan, Sains dan Teknologi CC-BY-SA or an equivalent license as the optimal license for the publication, distribution, use, and reuse of scholarly work.
In developing strategy and setting priorities Jurnal Pendidikan, Sains dan Teknologi recognize that free access is better than priced access, libre access is better than free access, and libre under CC-BY-SA or the equivalent is better than libre under more restrictive open licenses. We should achieve what we can when we can. We should not delay achieving free in order to achieve libre, and we should not stop with free when we can achieve libre.
Jurnal Pendidikan, Sains dan Teknologi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share a copy and redistribute the material in any medium or format
- Adapt a remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.





